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DIRECT TRANSFORMATION OF VARIATIONAL PROBLEMS
INTO CAUCHY SYSTEMS. [I. SCALAR-QUADRATIC CASE*

by

and Robert Kalaba2

1

James Hess

ABSTRACT: This series of papers addresses three interrelated problems:
the solution of a variational minimization problem, the solution of
integral equations, and the solution of an initial valued system of
integrodifferential equations. It will be shown that a large class

of minimization problems requires the solution of linear Fredholm
integral equations. It has also been shown that the solution of a

linear Fredholm integral equation is identical to the solution of a
Cauchy system. In this paper, we by-pass the Fredholm integral equations

and show that the minimization problem directly implies a solution of

~a Cauchy system. This first paper in the series looks only at quadratic

functionals and sca];r functions.
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1. INTRODUCTION

Many interesting optimization problems result in variational problems

of finding a function z(t), 0 < t < 1, that minimizes the functional

1

wiz] = ‘0

IS 2(s)k(t,s)z(t)dtds + fé z(t)zdt + 2 fz f(t)z(t)dt.

By standard variational techniques it can be shown that the optimal func-
tion, u(t), satisfies a linear Fredholm integral equation (Ref. 1). Recent
work in the study of integral equations (Ref. 2) has shown that solutions
of integral equations are equivalent to solutions of particular initial
valued systems of integrodifferential equations (Cauchy systems). It
appears that the three problems -- variational, integral equations, and
Cauchy systems ~- are equivalent to each other. An important missing link
in the analysis has been the demonstration that the variational problem
leads directly to a Cauchy system without passing through an integral equa-
tion. These papers provide that link. It would seem that the historical
emphasis put on the integral equations is but an accident. The Cauchy
systems can just as easily be developed and provide interesting insights
and computational aid in studying such variational probiems.

The direct reduction of the simplest problem in the calculus of

variations to a Cauchy system is given in Ref. 3; the train of thought
is quite different from that employed here.
2. DERIVATION

Suppose we desire to find a Scalar function z(t), 0 < t < 1, which

minimizes the quadratic functional
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1

0 !3 z2(s)k(t,s)z(t)dsdt + fa z(t)zdt + 2 fé f(t)z(t)dt, (1)

Wlz,A] = As

where k(t,s) is a symmetric, positive definite kernel, f(t) is a given
function, and A is a sufficiently small nonnegative scalar parameter. The
standard variational approach to this problem results in a linear Fredholm

integral equation which the optimal function must satisfy.

PROPOSITION 1: The function u(t) which minimizes W[u,2] must satisfy

the linear Fredholm integral equation

Mﬂ+fh)+x%kﬂﬁmhhs=m 0<t<l. (2)

PROOF: Denote the optimal function u(t). The arbitrary admissable

functions may be written as
w(t) = u(t) + en(t),

where ¢ is an arbitrary scalar,and n(t) is an arbitrary function.

The value of the functional for w(t) may be expressed as
Wwir] = Wlu,2] + eCluynza] + ezD[n;A].

where

1

b 1d u(s)k(t,s)n(t)dsdt + 2 7p u(t)n(t)dt + 2 7 F(t)n(t)dt

Clusnsnl =22 s

DLn,AJ = A s n(s)k(t,s)n(t)dsdt + i n(t)2dt.

2

For ¢ sufficiently small the term in ¢“ may be ignored. If u is in

fact the minimizing solution,then for all ¢

S
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C[U.n;)«] = 0., (3)

Applying the fundamental Temma of the calculus of variations

(fé g(t)h(t)dt = 0 for arbitrary h(t) implies g(t) = 0 for all

0 <t <1 (Ref. 1)) to Eq. (3),since n(t) is arbitrary, we get

Ea. 1Z). 0.E.D.

Another approach to the minimization problem is to ask how the optimal

solution changes as A varies. This is referred to as parametric imbedding.

The standard technique would begin with the 1inear Fredholm integral equa-
tion and convert it into a system of initial valued integro-differential

equations. The basic result given in Ref. 2 is

PROPOSITION 2: The function u(t,x) which satisfies the linear Fredholm |

integral Equation (2) is the solution u(t,)) to the following initial

valued integro-differential equations in u, augmented by a resolvent q

kernel K(t,s,»), and conversely:

0= uy(t,2) + $(t.0) + £ K(t,5,0)u(s,))ds (4)
Ky (ta520) = 7o K(£as'W)K(s " 5,0)ds’ (5)
u(t,0) = -£(t) (6)
K(t,s,0) = -k(t,s) (7)
W(t.s) = 7g k(t,s)u(s,A)dr (8)
0<t<l, 0<sc<l. (9)
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The Cauchy system (4)-(9) has proved to be very useful for the
computation of the solution of Fredholm integral equations, as well as
for the study of the sensitivity of the solution to changes in the para-
meter A.

We will now show that the Cauchy system (4)-(9) may be derived
directly from the original minimization problem, without ever writing
down the Fredholm integral Equation (2). In fact, the solution of the
minimization problem could have proceded even if historically the
Fredholm integral equation had never been discovered. The Cauchy system

is perfectly adequate for describing the optimal function u(t).

PROPOSITION 3: The function u(t,A) which minimizes W[u;x] satisfies

the Cauchy system (4)-(9).

PROOF: Suppose u(t,2) is the minimizing function for parameter
value A, and suppose u(t,x+dr) is the minimizing function for

parameter value A+d); then the first variations must satisfy the

following inequalities for arbitrary e, n, €, n:
EC[U(t,A),n;X] 10 (]0)
eClu(t,a+dr), n; A+da] > 0. (1)

Since ¢, n, €, n are all arbitrary, pick n = n and ¢ = -¢ so that

(10) and (11) are
-eClu(t,2),n52] > 0

eClu(t,+dr), n; a+dr) > O,




Add these two inequalities to get
e[2a f(])fg)(u(s,“dx)-u(sx))k(t,s)ﬁ(t)dsdt+2 f(‘,(u(t,mx)-u(t,z))B(t)dt
+2dx I:Jf] u(s.a+da)k(t.s)n(t)dsdt] > 0. (12)

0

Since € has arbitrary sign, the term in square brackets in (12) must
be zero. Since n(t) is arbitrary, apply the fundamental lemma of the
.

calculus of variations to the bracketed term to get
23 1y k(t,s)(u(s,x+dr)-u(s, 1) Jds+2(u(t,A+dr)-u(t,2))

#2410 1 u(s, 40 )k(t,8)ds = 0. (13)
Divide (13) by 2dx and take the 1imit as dix + O,

0 = uy(t,3) +1 sy k(t,s)u,(s,2)ds + rg k(t,s)u(s,\)ds. (14)

This is a Fredholm integral equation with kernel k(t,s). Corresponding

to k(t,s) is a resolvent kernel K(t,s,)) such that solutions of

Frednolm integral equations

0= v(t) + $(t.2) + A 1) k(t,s)v(s)ds (15)
can be expressed as

0= v(t) + y(t,2) + 2 f& K(t,s,2)u(x,2)ds.

Using the resolvent kernel to express the solution of (14), where

v(t,2) = fé k(t,s)u(s,r)ds, we get

0= ux(t,x) + ¢(t,2) + 2 ,(1, K(t,8,2)¢(s,1)ds.
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This is nothing other than Eq. (4) of the Cauchy system. The resol-

vent kernel must itself satisfy a Fredholm integral equation
0 = K(t,s,2) + k(t,s) + a f& k(t,s')K(s',s,\)ds". (16)
Differentiate (16) with respect to A to get

0= Kx(t,S.A) + fé kit s JR(s" ,5,1)ds" + 2 f% k(t,s')Kx(s',s,x)ds.
(17)

From Eq. (16) we can reexpress the second term of (17):

0= Kk(t,s,x) - % (K(t,s,2) + k(t,s)) + 2 f; k(t,s')KA(s',s,A)ds'.
(18)

However, Eq. {18) is a Fredholm integral equation with the same ker-

nel as Eq. (15). Its solution may be expressed using the same resol-

vent kernel K(t,s,2),
0 = Ky(t,5,1) = 7 (K(t,5,2) = K(t,5)) + 2 s K(t,5,2)

-()(K(sts42) * K(s',5))ds". (19)
Using Eq. (16) again, several terms in Eq. (19) cancel out, leaving
K,(tss,1) = IA K(tys'sA)K(s',s,2)ds’

which is just Eq. (5) of the Cauchy system. To get the initial con-
ditions (7), set » = 0 in Eq. (16). To get initial condition (6)

set A = 0 in W[z,1]. The minimizing function u(t,0) of

fa u(t.O)zdt +2 f; f(t)u(t.0)dt

can easily be shown to be u(t,0) = f(t). Q.E.D.
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3. DISCUSSION

The main purpose of this paper has been to reduce the gquadratic
variational problem in Eq. (1) to the Cauchy system in relations (4)-(9).
In particular we have been able to do this without making any use of the
Euler equation, which takes the form of the Fredholm integral equation
(2).

Subsequent papers in this series will be devoted to systems and to
the treatment of non-quadratic variational problems. Application to team

decision theory and other areas will be presented.
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